If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+19=83
We move all terms to the left:
k^2+19-(83)=0
We add all the numbers together, and all the variables
k^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $
| x+(-18)=34 | | 5k=39 | | 12x=13x-8 | | 9+3j=-6j | | 8x-38=360 | | A=7x+49 | | 45(4x+1)=180 | | -8n-4=-4n+8 | | -7+w=-w+7 | | 14x+12x=180 | | −2y−17=4y+7. | | 2m=-9+3m | | x2-24=-8x | | -7c=10-6c | | 2(x2(x-3)=1/2(4x-12) | | 49=7x+56 | | x/0.8=35 | | 17+1/x=18 | | -8w=-9-7w | | 46+(2x+14)=180 | | 1-6j=-7j | | 72+24y=288 | | 3=0.75x | | (9x-3)=(15x-39) | | 13x+5=3x+25 | | 0=0.6x=3.6 | | 3p=4=13 | | 15=m*25 | | 12m−m−7m+3=0 | | 1/3=2m/3 | | 2n+25=37 | | 7(x+8)+4(8x+6)=2 |